Bid, Bax, and Lipids Cooperate to Form Supramolecular Openings in the Outer Mitochondrial Membrane

نویسندگان

  • Tomomi Kuwana
  • Mason R. Mackey
  • Guy Perkins
  • Mark H. Ellisman
  • Martin Latterich
  • Roger Schneiter
  • Douglas R. Green
  • Donald D. Newmeyer
چکیده

Bcl-2 family proteins regulate the release of proteins like cytochrome c from mitochondria during apoptosis. We used cell-free systems and ultimately a vesicular reconstitution from defined molecules to show that outer membrane permeabilization by Bcl-2 family proteins requires neither the mitochondrial matrix, the inner membrane, nor other proteins. Bid, or its BH3-domain peptide, activated monomeric Bax to produce membrane openings that allowed the passage of very large (2 megadalton) dextran molecules, explaining the translocation of large mitochondrial proteins during apoptosis. This process required cardiolipin and was inhibited by antiapoptotic Bcl-x(L). We conclude that mitochondrial protein release in apoptosis can be mediated by supramolecular openings in the outer mitochondrial membrane, promoted by BH3/Bax/lipid interaction and directly inhibited by Bcl-x(L).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bax oligomerization in mitochondrial membranes requires tBid (caspase-8-cleaved Bid) and a mitochondrial protein.

In response to various apoptotic stimuli, Bax, a pro-apoptotic member of the Bcl-2 family, is oligomerized and permeabilizes the mitochondrial outer membrane to apoptogenic factors, including cytochrome c. Bax oligomerization can also be induced by incubating isolated mitochondria containing endogenous Bax with recombinant tBid (caspase-8-cleaved Bid) in vitro. The mechanism by which Bax oligom...

متن کامل

Lipidic pore formation by the concerted action of proapoptotic BAX and tBID.

BCL-2 homology 3 (BH3)-only proteins of the BCL-2 family such as tBID and BIM(EL) assist BAX-type proteins to breach the permeability barrier of the outer mitochondrial membrane, thereby allowing cytoplasmic release of cytochrome c and other active inducers of cell death normally confined to the mitochondrial inter-membrane space. However, the exact mechanism by which tBID and BIM(EL) aid BAX a...

متن کامل

BIM and tBID are not mechanistically equivalent when assisting BAX to permeabilize bilayer membranes.

BIM and tBID are two BCL-2 homology 3 (BH3)-only proteins with a particularly strong capacity to trigger BAX-driven mitochondrial outer membrane permeabilization, a crucial event in mammalian apoptosis. However, the means whereby BIM and tBID fulfill this task is controversial. Here, we used a reconstituted liposomal system bearing physiological relevance to explore systematically how the BAX-p...

متن کامل

Mitochondrial outer membrane proteins assist Bid in Bax-mediated lipidic pore formation.

Mitochondrial outer membrane permeabilization (MOMP) is a critical step in apoptosis and is regulated by Bcl-2 family proteins. In vitro systems using cardiolipin-containing liposomes have demonstrated the key features of MOMP induced by Bax and cleaved Bid; however, the nature of the "pores" and how they are formed remain obscure. We found that mitochondrial outer membranes contained very litt...

متن کامل

Apoptosis: Mitochondrial Membrane Permeabilization – The (W)hole Story?

One critical step of apoptosis is the release of mitochondrial proteins through the outer mitochondrial membrane. Recent work shows that two pro-apoptotic Bcl-2 family proteins, Bax and Bid, as well as the mitochondrion-specific lipid cardiolipin may cooperate in chemically defined liposomes to generate a protein-permeable conduit, relaunching the debate on the identity of the pore responsible ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 111  شماره 

صفحات  -

تاریخ انتشار 2002